Structural, spectroscopic and redox studies of *trans*- $[RuX_2L_4]^{0/+}$ (L = PR₃, AsR₃ or SbR₃; X = Cl, Br or I). Crystal structures of *trans*- $[RuX_2(EMe_2Ph)_4]$ (X = Br, E = Sb; X = I, E = As), $[Ru_2Br_5(SbMe_2Ph)_4]$ and $[Ru_2I_3(PMe_2Ph)_6][CF_3SO_3]$

Nicholas J. Holmes, William Levason* and Michael Webster

Department of Chemistry, University of Southampton, Southampton, UK SO17 1BJ

The complexes trans-[RuX₂L₄] (X = Cl, Br or I; L = PMe₃, AsMe₂Ph or SbMe₂Ph) have been prepared from RuCl₃·nH₂O, LiX and L, from [Ru(dmf)₆][CF₃SO₃]₃ (dmf = N,N-dimethylformamide), LiX and L, and in other ways. The complexes cis-[RuX₂(PMe₂Ph)₄] (X = Cl or Br) have been made from [RuX₂(PPh₃)₃] and PMe₂Ph in hexane and cis-[RuX₂(PMe₃)₄] from solutions of the trans isomers on standing in CH₂Cl₂. Oxidation of trans-[RuX₂L₄] to trans-[RuX₂L₄]BF₄ has been achieved either with AgBF₄ in CH₂Cl₂ or concentrated HNO₃ in aqueous HBF₄. The complexes have been characterised by analysis, UV/VIS, IR, ¹H and ³¹P-{¹H} NMR spectroscopy as appropriate, and the Ru^{II}-Ru^{III} oxidations probed by cyclic voltammetry. The behaviour of this series of complexes is compared with that of the osmium [OsX₂L₄]^{0V+/2+} analogues. The crystal structures of trans-[RuX₂L₄] (X = I, L = AsMe₂Ph; X = Br, L = SbMe₂Ph), [Ru₂Br₅(SbMe₂Ph)₄] and [Ru₂I₃(PMe₂Ph)₆][CF₃SO₃] have been determined.

We have described elsewhere the effects of systematic variation of both neutral and halide ligands upon the stability, spectroscopic properties and redox chemistry of several series of osmium complexes including trans-[OsX₄L₂]^{0/-} (ref. 1), mer-[OsX₃L₃]^{0/+} (ref. 2) and trans-[OsX₂L₄]^{0/+/2+} (ref. 3) (L = PR₃, AsR₃ or SbR₃; X = Cl or Br, sometimes I). Limited information is available for ruthenium complexes with monodentate ligands, in part because of the much greater reactivity and their tendency to rearrange into halide-bridged dimers. The studies of $[RuX_{6-n}(RCN)_n]$ are a notable contribution involving nitrogen donor ligands. More recently we have observed that for mer- $[RuX_3L_3]$ both oxidation and reduction are electrochemically irreversible, and solution decomposition yields the Ru_2^{5+} species $[Ru_2X_5L_4]$. Here we report studies of the tetrakis-(ligand) complexes trans- $[RuX_2L_4]$ ^{0/+} and cis- $[RuX_2(PR_3)_4]$.

Results and Discussion

Synthesis and properties of ruthenium(II) complexes

The complex trans-[RuCl₂(PMe₃)₄] is best made from [RuCl₂(PPh₃)₃] and PMe₃ in hexane,⁶ whilst a similar reaction using PMe₂Ph affords cis-[RuX₂(PMe₂Ph)₄] (X = Cl or Br).⁴ For reasons that are unclear the reaction of $[RuX_2(PPh_3)_3](X = Br$ or I) with PMe3 in hexane did not cleanly afford trans-[RuX₂(PMe₃)₄], and the latter were best made by reflux of trans-[RuCl₂(PMe₃)₄] with the appropriate LiX in ethanol. The complexes cis-[RuX₂(PMe₃)₄] (X = Cl or Br) have previously been prepared 6 by reduction of the trans isomers with Na/Hg to give [RuH(η²-CH₂PMe₂)(PMe₃)₃] followed by reaction with HX. A simpler preparation is to allow CH₂Cl₂ solutions of the trans isomers to stand for several days with exclusion of oxygen, when almost complete (>95%) conversion occurs as monitored by ³¹P-{¹H} NMR spectroscopy. These complexes are stable in CH₂Cl₂, but cis-[RuX₂(PMe₂Ph)₄] rapidly rearrange into the dimers [Ru₂(μ-X)₃(PMe₂Ph)₆]X at ambient temperatures.⁴ The reaction of [RuI₂(PPh₃)₃]⁹ with PMe₂Ph in hexane affords a fawn solid, analytically [RuI₂(PMe₂Ph)₄]. A freshly prepared solution of this in cold (250 K) CHCl₃, exhibited a ³¹P-{¹H} NMR spectrum consisting of two broad signals (ill defined triplets?) of approximately 1:1 intensity at δ +2.1 and -29.4 attributed to cis-[RuI₂(PMe₂Ph)₄] and a sharp singlet at $\delta + 5.7$, tentatively assigned to the trans isomer. However after 30 min at room temperature the solution had a ³¹P-{¹H} NMR spectrum which had completely lost these resonances, and now contained five singlets. It would seem that the rearrangement of [RuI₂-(PMe₂Ph)₄] is even faster than for the lighter halides, and the products of rearrangement have not been identified. Refluxing $[Ru(dmf)_6][CF_3SO_3]_3^{10}$ (dmf = N,N-dimethylformamide) with PMe₂Ph and LiI in ethanol produced the dimer [Ru₂(μ-I)₃-(PMe₂Ph)₆][CF₃SO₃], which had a single ³¹P-{¹H} NMR resonance at δ +11.7, and was fully characterised by a single-crystal X-ray study (below). The arsine and stibine complexes trans- $[RuX_2L_4]$ (X = Cl, Br or I; L = AsMe₂Ph or SbMe₂Ph) were made directly from RuCl₃·nH₂O and an excess of L in alcohols (with an excess of LiX in the case of X = Br or I). The iodocomplexes can also be made from [Ru(dmf)₆][CF₃SO₃]₃, L and LiI. Unlike the phosphines, the arsine and stibine complexes show no tendency to isomerise to the cis forms. Surprisingly few ruthenium iodo complexes have been characterised previously,9 and the only tertiary stibine complexes in the literature are trans-[RuX₂(SbPh₃)₄].11

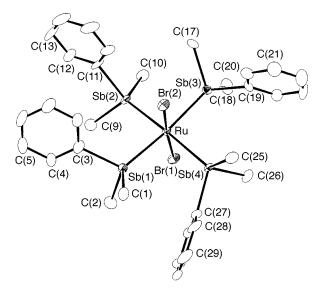
The trans-[RuX₂L₄] complexes which range from orange to red-purple (Table 1) were characterised by analysis and either electrospray or FAB mass spectrometry (Experimental section). The identification as trans isomers was made on the basis of single ${}^{1}H$, and for $L = PMe_{3}$ single ${}^{31}P - \{{}^{1}H\}$, NMR resonances, and this was confirmed by X-ray studies of trans-[RuI₂(AsMe₂Ph)₄], trans-[RuBr₂(SbMe₂Ph)₄] and trans-[RuI₂-(SbMe₂Ph)₄] (see below). The UV/VIS spectra (Table 1) typically show two moderate-intensity bands in the region 18 000-28 000 cm⁻¹, which may be assigned to the d-d transitions, ${}^{1}A_{1g} \longrightarrow {}^{1}E_{g}$ and ${}^{1}A_{1g} \longrightarrow {}^{1}A_{2g}$ respectively in D_{4h} symmetry. For trans-[RuX₂(PMe₃)₄] (X = Cl or Br) bands of similar intermediates of the symmetry of the symmetry of the symmetry. sity appear at ca. 30 000 cm⁻¹ and may be derived from the ${}^{1}A_{1g} \longrightarrow {}^{1}T_{2g}$ transitions. For the other ruthenium(II) complexes (Table 1) the higher-energy bands have larger ε_{mol} values suggestive of charge-transfer or internal-ligand transitions. The complexes trans-[RuX2(PMe3)4] in CH2Cl2 slowly oxidise in air to Ru^{III}, but the other complexes are air-stable. Cyclic voltammetry reveals (Table 2) reversible one-electron oxidations occur in the range 0.4-0.7 V, similar to those of ruthenium(II) com-

Table 1 The UV/VIS spectral data of [RuX₂L₄] and [RuX₂L₄]BF₄ in CH₂Cl₂ solutions

Complex	Colour	$E_{\rm max}/10^3 {\rm cm}^{-1} (\epsilon_{\rm mol}/{\rm dm}^3 {\rm mol}^{-1} {\rm cm}^{-1})$
trans-[RuCl ₂ (PMe ₃) ₄]	Orange	32.1 (670), 27.3 (sh) (≈450), 22.5 (230)
trans-[RuBr ₂ (PMe ₃) ₄]	Orange	31.2 (730), 27.8 (330), 21.4 (225)
trans-[RuI ₂ (PMe ₃) ₄]	Pink	33.3 (11 300), 20.4 (520)
trans-[RuCl ₂ (AsMe ₂ Ph) ₄]	Dark orange	33.9 (sh) (3200), 27.0 (sh) (≈400), 20.3 (380)
trans-[RuBr ₂ (AsMe ₂ Ph) ₄]	Purple	30.0 (sh) (≈1000), 26.3 (sh) (≈400), 19.6 (290)
trans-[RuI ₂ (AsMe ₂ Ph) ₄]	Purple	31.4 (11 300), 25.0 (sh) (≈500), 18.7 (260)
trans-[RuCl ₂ (SbMe ₂ Ph) ₄]	Pink	35.6 (32 850), 25.6 (sh) (≈500), 19.5 (450)
trans-[RuBr ₂ (SbMe ₂ Ph) ₄]	Purple-red	33.3 (sh) (18 000), 25.6 (sh) (≈450), 19.0 (385)
trans-[RuI ₂ (SbMe ₂ Ph) ₄]	Red	33.9 (16 270), 29.3 (7100), 27.3 (sh), 18.6 (330)
cis-[RuCl ₂ (PMe ₃) ₄]	Yellow	29.3 (760)
cis-[RuBr ₂ (PMe ₃) ₄]	Yellow	28.5 (900)
cis-[RuCl ₂ (PMe ₂ Ph) ₄]	Yellow	29.8 (2380), 27.3 (sh) (≈1900)
cis-[RuBr ₂ (PMe ₂ Ph) ₄]	Yellow	29.0 (1480), 26.8 (sh) (≈1250)
trans-[RuCl ₂ (PMe ₃) ₄]BF ₄	Green	27.5 (2970), 24.6 (sh) (≈900), 17.5 (sh) (≈600), 16.0 (1030)
trans-[RuBr ₂ (PMe ₃) ₄]BF ₄	Green	23.5 (1965), 15.9 (580), 14.5 (1615)
trans-[RuI ₂ (PMe ₃) ₄]BF ₄	Purple	30.5 (3435), 20.5 (1020), 17.7 (sh) (≈540), 12.8 (sh) (≈560), 11.2 (5400)
trans-[RuCl ₂ (AsMe ₂ Ph) ₄]BF ₄	Green	33.8 (27 100), 27.3 (sh) (≈2320), 24.4 (sh) (≈1200), 14.9 (1000)
trans-[RuBr ₂ (AsMe ₂ Ph) ₄]BF ₄	Green-brown	33.0 (18 190), 22.8 (1410), 13.6 (1335)
trans-[RuI ₂ (AsMe ₂ Ph) ₄]BF ₄	Brown	$31.7 \text{ (sh) } (8775), 24.9 \text{ (sh) } (\approx 1460), 19.0 (870), 16.6 (740), 11.2 (930)$
trans-[RuCl ₂ (SbMe ₂ Ph) ₄]BF ₄	Orange-brown	34.6 (21 300), 24.4 (1450), 18.6 (sh) (300), 12.9 (130)
trans-[RuBr ₂ (SbMe ₂ Ph) ₄]BF ₄	Brown	32.9 (18 400), 28.1 (19 000), 22.7 (sh) (≈1350), 18.8 (sh) (≈630), 11.0 (330)
trans-[RuI ₂ (SbMe ₂ Ph) ₄]BF ₄	Dark brown	30.7 (13 800), 26.5 (7700), 20.0 (1300), 11.0 (280), 9.2 (2100)

Table 2 Electrochemical data, E_e/V vs. SCE^a

Complex	$Ru^{II}-Ru^{IIIb}$	Ru ^{III} –Ru ^{II} c
trans-[RuCl ₂ (PMe ₃) ₄] ^{0/+}	0.44	0.45
trans-[RuBr ₂ (PMe ₃) ₄] $^{0/+d}$	0.38	0.40
$trans$ -[RuI ₂ (PMe ₃) ₄] $^{0/+}$	0.64	0.68
trans-[RuCl ₂ (AsMe ₂ Ph) ₄] ^{0/+}	0.56	0.56
trans-[RuBr ₂ (AsMe ₂ Ph) ₄] ^{0/+}	0.59	0.58
trans-[RuI ₂ (AsMe ₂ Ph) ₄] ^{0/+}	0.60	0.59
trans-[RuCl ₂ (SbMe ₂ Ph) ₄] ^{0/+}	0.64	0.63
trans-[RuBr ₂ (SbMe ₂ Ph) ₄] ^{0/+}	0.66	0.64
trans-[RuI ₂ (SbMe ₂ Ph) ₄] ^{0/+}	0.64	0.66
cis-[RuCl ₂ (PMe ₃) ₄]	$1.25^{d,e}$	_
cis-[RuBr ₂ (PMe ₃) ₄]	$1.46^{d,e}$	_


 a In CH₂Cl₂ containing 0.2 mol dm $^{-3}$ [NBun₄][BF₄]. Reversible couples with $\Delta E_{\rm p}$ in the range 60–80 mV unless indicated otherwise. In this solvent ferrocene–ferrocenium occurs at 0.57 V. b Starting with [RuX₂L₄] complex, forward process is oxidation. c Starting with [RuX₂L₄] $^+$ complex, forward process is reduction. d In MeCN versus ferrocene–ferrocenium at 0.41 V. c Irreversible.

plexes with diphosphine and diarsine ligands,¹² but approximately 0.3 V more positive than observed for the osmium analogues.³ The effect on $E_{\rm O}$ of changing the halogen is very small, but the redox potentials shift to more positive values with the neutral donor $PR_3 < AsR_3 < SbR_3$.

The *cis* isomers were obtained only with PMe₃ and PMe₂Ph, the geometry being established by the presence of two triplets (1:1) in the ³¹P-{¹H} NMR spectra. The yellow *cis* isomers exhibit only a single weak d–d band sometimes with a low-energy shoulder <30 000 cm⁻¹ (Table 1). In marked contrast to the *trans* analogues, *cis*-[RuX₂(PMe₃)₄] show only an irreversible oxidation at much more positive potentials, a trend also seen in the osmium analogues.³

Crystal structures of trans-[RuX₂(EMe₂Ph)₄] (X = Br, E = Sb; X = I, E = As) \dagger

Both species adopt the *trans* geometry, the bromide is shown in Fig. 1 and the iodide in Fig. 2, with selected bond lengths and angles in Table 3. There is no crystallographic symmetry but the RuX_2E_4 framework is approximately D_{4h} [cis (90°) angles in the

Fig. 1 Structure of *trans*-[RuBr₂(SbMe₂Ph)₄] showing the atom labelling scheme. Hydrogen atoms are omitted for clarity and the thermal ellipsoids are drawn at the 50% probability level

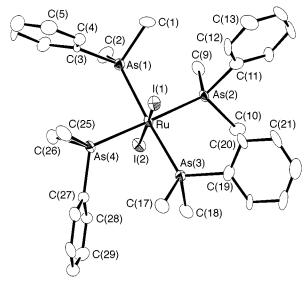


Fig. 2 Structure of trans-[RuI₂(AsMe₂Ph)₄]. Details as in Fig. 1

[†] The structure of trans-[RuI₂(SbMe₂Ph)₄] was also determined and found to be isomorphous with the arsine analogue. The data were not of good quality but established the trans geometry: a = 17.884(3), b = 9.439(8), c = 23.233(2) Å, $\beta = 104.022(9)^{\circ}$, space group $P2_1/a$, Z = 4, 150 K.

Table 3 Selected bond lengths (Å) and angles (°) for trans-[RuX₂-(EMe₂Ph)₄] (X = Br, E = Sb; X = I, E = As)

	X = Br, E = Sb	X = I, E = As
Ru-X(1)	2.572(1)	2.732(2)
Ru-X(2)	2.567(1)	2.745(2)
Ru-E(1)	2.590(1)	2.464(3)
Ru-E(2)	2.596(1)	2.504(2)
Ru-E(3)	2.573(1)	2.477(3)
Ru-E(4)	2.584(1)	2.458(2)
E-C	2.11(1)-2.16(1)	1.91(2)-1.97(2)
X(1)-Ru-X(2)	175.68(4)	174.61(6)
X-Ru-E (cis)	83.61(3)–100.01(3)	83.06(5)–101.65(6)
E-Ru-E (cis)	88.20(3)–92.62(3)	88.34(7)-93.39(7)
Ru-E-Me	115.0(3)–123.5(3)	115.7(5)–121.2(5)
Ru-E-Ph	115.4(3)–124.5(2)	120.0(5)-125.9(5)
C-E-C	95.5(4)–101.2(4)	95.1(6)–101.1(6)

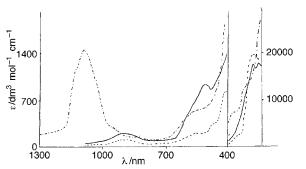


Fig. 3 The UV/VIS spectra of trans-[RuX₂(SbMe₂Ph)₄] (X = Cl, Br or I) in CH₂Cl₂ solution (- - -, X = Cl; —, Br; - · -, I)

range 83.1–101.6°] with the conformation of the two methyl and phenyl groups dictated presumably by the inter- and intramolecular packing. The Ru–Sb distances in *trans*-[RuCl₂-(SbPh₃)₄]¹¹ [2.625(1)–2.632(1) Å] are somewhat longer than the present values (Table 3). The ligand geometry is unexceptional.

Synthesis and properties of ruthenium(III) complexes

A variety of reagents were explored in attempts to oxidise the *trans*-[RuX₂L₄] complexes. Halogens proved to be unsuitable tending to remove some L ligands. For *trans*-[RuX₂L₄] (L = PMe₃ or AsMe₂Ph) oxidation to the ruthenium(III) complexes was achieved by AgBF₄ in CH₂Cl₂, but the reaction failed for L = SbMe₂Ph, and the arsine and stibine complexes were oxidised easily using concentrated HNO₃-HBF₄ at 0 °C. Given the highly positive redox potentials (Table 2), oxidation of *cis*-[RuX₂(PR₃)₄] was expected to be difficult; in fact concentrated HNO₃ at 0 °C rapidly converted the orange ruthenium(II) complexes into dark green materials, which turned brown and decomposed unless rapidly isolated. However examination of the green product formed from *cis*-[RuCl₂(PMe₂Ph)₄] indicated that a nitrosyl complex [v(NO) at 1838 cm⁻¹] was formed, and the reactions were not further studied.

The intensely coloured *trans*-[RuX₂L₄]BF₄ (Table 1) are stable in the solid state, and decompose only very slowly in chlorocarbon solvents. The *trans* geometry of these paramagnetic complexes is confirmed by the single v(Ru–X) vibrations in the far-IR spectra, and by the cyclic voltam-mograms which showed reversible one-electron reductions to reform the ruthenium(II) complexes (Table 2). For *trans*-[RuX₂(L–L)₂]⁺ [L–L for example *o*-C₆H₄(PMe₂)₂ or Me₂PCH₂-CH₂PMe₂] irreversible oxidation at highly positive potentials to ruthenium(IV) complexes were observed, but these proved too unstable to isolate by chemical oxidation. However for the less robust [RuX₂L₄]⁺ complexes, only ill defined oxidations near to the solvent limit were evident in the cyclic voltam-



Fig. 4 Structure of [Ru₂Br₅(SbMe₂Ph)₄]. Details as in Fig. 1

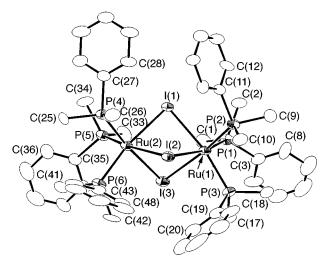


Fig. 5 Structure of the cation in $[Ru_2I_3(PMe_2Ph)_6][CF_3SO_3]$. Details as in Fig. 1

mograms. The trans-[RuX₂L₄]⁺ complexes have rich UV/VIS spectra (Table 1, Fig. 3), the main features of which can be assigned as $L(\sigma)\rightarrow Ru(t_{2g})$ and $X(\pi)\rightarrow Ru(t_{2g})$ charge transfer by analogy with the osmium(III) analogues.³ In D_{4h} symmetry the ruthenium d orbitals split giving the configuration $b_2^2 < e^3 <$ $a_1^0 < b_1^0$. From the reported spectra ^{12,13} of other trans- $[RuX_2L_4]^+$ we expect $Cl(\pi)\rightarrow Ru(e)$ at ca. 27 000 cm⁻¹ and $Br(\pi) \rightarrow Ru(e)$ at ca. 22 000 cm⁻¹, with $I(\pi) \rightarrow Ru(e)$ at ca. 12 000–10 000 cm⁻¹, whilst other low-energy features will be P/ As/Sb(σ) \rightarrow Ru(e), Ru(a₁). The spectra are complex and as we have argued elsewhere 3,12 are complicated by near coincidence of some transitions and the increasing splitting produced by spin-orbit effects in complexes with the heavier donors. As usual corresponding features shift to low energy by 3000–5000 cm⁻¹ between Os and Ru reflecting the greater ease of reduction in the ruthenium(III) systems.

Structures of $[Ru_2Br_5(SbMe_2Ph)_4]$ and $[Ru_2I_3(PMe_2Ph)_6]$ - $[CF_3SO_3]$

The structures of the binuclear [Ru₂Br₅(SbMe₂Ph)₄] and the cation [Ru₂I₃(PMe₂Ph)₆]⁺ are shown in Figs. 4 and 5 respectively and selected bond lengths and angles are given in Table 4. Both species contain the well known confacial bioctahedral arrangement with three bridging halogen atoms. A few X-ray-quality crystals of the former arose during attempts to grow crystals of [RuBr₂(SbMe₂Ph)₄]. The complex [Ru₂Br₅(SbMe₂-Ph)₄] has two-fold crystallographic symmetry and is isomorphous with the analogous compounds of P and As recently reported.⁸ It appears to represent the first Ru₂⁵⁺ derivative with an antimony ligand. The Ru–Ru distance [2.942(2) Å] is similar to the value in the corresponding arsine compound and it is regarded as having a bond-order of 0.5. In the second compound, [Ru₂I₃(PMe₂Ph)₆][CF₃SO₃], the cation has no crystallo-

Table 4 Selected bond lengths (Å) and angles (°) for $[Ru_2Br_5(Sb-Me_2Ph)_4]$ and $[Ru_2I_3(PMe_2Ph)_6][CF_3SO_3]$

(a) [Ru ₂ Br ₅ (SbMe ₂ Ph)4]		
Ru-Br(1)	2.516(2)	Ru-Ru'	2.942(2)
Ru-Br(1')	2.582(2)	Ru-Sb(1)	2.558(2)
Ru-Br(2)	2.503(2)	Ru-Sb(2)	2.548(2)
Ru-Br(3)	2.592(2)	Sb-C	2.11(1)-
			2.15(1)
Ru-Br(1)-Ru'	70.48(6)	Br(1')-Ru-Sb(2)	174.03(6)
Ru-Br(3)-Ru'	69.17(7)	Br(3)-Ru-Sb(1)	173.37(6)
Br(1)- Ru - $Br(2)$	175.33(7)	Sb(1)-Ru-Sb(2)	97.63(5)
Ru-Sb-C	112.9(4)-	C-Sb-C	98.6(5)-
	122.0(4)		102.9(6)
(b) [Ru ₂ I ₃ (PMe ₂ Ph) ₆][CF ₃ SO ₃]		
Ru(1)–I(1)	2.794(5)	Ru(1)-P(1)	2.320(14)
Ru(1)–I(2)	2.769(19)	Ru(1)-P(2)	2.299(4)
Ru(1)-I(3)	2.782(2)	Ru(1)-P(3)	2.328(5)
Ru(2)-I(1)	2.787(8)	Ru(2)-P(4)	2.315(12)
Ru(2)-I(2)	2.795(2)	Ru(2)-P(5)	2.304(5)
Ru(2)–I(3)	2.806(15)	Ru(2)-P(6)	2.347(7)
P-C	1.81(2)-	$Ru(1)\cdots Ru(2)$	3.740(18)
	1.87(2)		
Ru(1)–I(1)–Ru(2)	84.2(3)	I(1)-Ru(1)-I(2)	79.2(3)
Ru(1)-I(2)-Ru(2)	84.5(2)	I(1)-Ru(1)-I(3)	81.5(1)
Ru(1)-I(3)-Ru(2)	84.0(2)	I(2)-Ru(1)-I(3)	79.9(1)
I(1)-Ru(2)-I(2)	78.83(6)	I(2)-Ru(2)-I(3)	79.09(7)
I(1)-Ru(2)-I(3)	81.2(4)	P-Ru-P	92.2(4)-
Ru-P-C	113.8-		98.9(2)
	123.4(6)	C-P-C	96.7(9)-
			102.0(8)

Symmetry operation: (') 1 - x, y, $\frac{1}{2} - z$.

graphic symmetry and the bridging iodine atoms are bonded symmetrically [Table 4(b)]. The counter ion was modelled as an extensively disordered triflate anion, $[CF_3SO_3]^-$ (see Experimental section). Several comparable structures of the type $[Ru_2X_3(ER_3)_6]^+$ have been reported (for a summary see ref. 14); the $Ru \cdots Ru$ distance [3.74(2) Å], which is 0.4 Å longer than in the chloro compound, indicates that there is no bond present, and this example appears to be the first iodo derivative structurally characterised.

Conclusion

This is the first systematic study of a series of redox pairs trans- $[RuX_2L_4]^{0/+}$, and it is useful to compare the results with previous data on the osmium analogues.3 There are considerable similarities, e.g. the isomerisation of trans-[MX₂(PR₃)₄] to cis-[MX₂- $(PR_3)_4$ (M = Ru or Os) in chlorocarbon solution, although for cis-[OsX₂(PMe₂Ph)₄] further rearrangement into dimers is not observed at ambient temperatures. For both metals, oxidation of the trans isomers is much easier than for the cis, and comparison of the redox potentials shows that OsII-OsIII couples are typically 0.3-0.5 V less positive than for RuII-RuIII for the same ligand set. Moreover further reversible oxidation to Os^{IV} is often observed,³ whereas there is no evidence that ruthenium(IV) complexes can be formed. As in the mer-[RuX₃L₃] systems,⁷ the formation of halide-bridged dimers is relatively facile for the ruthenium systems, whereas the corresponding osmium complexes form only slowly under much more forcing conditions.5

Experimental

Physical measurements were made as described previously.^{2,8}

Ruthenium(II) complexes

trans-[RuCl₂(AsMe₂Ph)₄]. The compounds RuCl₃·xH₂O (0.5

g, 1.9 mmol) and AsMe₂Ph (1.81 g, 9.95 mmol) in methanol (25 cm³) were refluxed under nitrogen for 17 h and then cooled to room temperature. The dark orange solid obtained was filtered off, washed with methanol (2 × 15 cm³), and dried *in vacuo* (1.3 g, 76% based on RuCl₃·xH₂O) (Found: C, 42.4; H, 4.6. Calc. for C₃₂H₄₄As₄Cl₂Ru: C, 42.7; H, 4.9%). \tilde{v} (Ru–Cl)/cm⁻¹ (Nujol mull) 304. Electrospray mass spectrum: m/z 717 and 682. Calc. for C₂₄H₃₃As³⁵Cl₂¹⁰¹Ru 717, C₂₄H₃₃As₃³⁵Cl¹⁰¹Ru 682. ¹H NMR (298 K, CDCl₃): δ 1.35 (s) and 7.0–7.6 (m).

trans-[RuBr₂(AsMe₂Ph)₄]. The compounds RuCl₃·xH₂O (0.38 g, 1.45 mmol) and LiBr (2.25 g, 25.9 mmol) in water (100 cm³) were refluxed under nitrogen for 2 h and then stirred at room temperature overnight. The water was removed (hot-plate stirrer) and methanol (30 cm³) and AsMe₂Ph (1.38 g, 7.58 mmol) were added. The mixture was then refluxed under nitrogen for 17 h and cooled to room temperature. The purple solid obtained was filtered off, washed with methanol (2 × 15 cm³), and dried *in vacuo* (1.3 g, 91% based on RuCl₃·xH₂O) (Found: C, 38.6; H, 4.4. Calc. for C₃₂H₄₄As₄Br₂Ru: C, 38.8; H, 4.5%). \tilde{v} (Ru–Br)/cm⁻¹ (Nujol mull) 248. Electrospray mass spectrum: m/z = 807, 726. Calc. for C₂₄H₃₃As₃⁷⁹Br₂¹⁰¹Ru 805, C₂₄H₃₃As₃⁻⁷⁹Br¹⁰¹Ru 726. ¹H NMR (298 K, CDCl₃): δ 1.5 (s) and 7.1–7.7 (m).

trans-[RuI₂(AsMe₂Ph)₄]. The complex [Ru(dmf)₆][CF₃SO₃]₃ ¹⁰ (0.67 g, 0.68 mmol) was dissolved in warm ethanol (30 cm³). To this, AsMe₂Ph (0.37 g, 2.03 mmol) was added and the mixture heated to reflux under nitrogen for 30 min. To the dark yellow solution formed, LiI (0.31 g, 2.04 mmol) in ethanol (10 cm³) was added and the mixture again heated to reflux under nitrogen for 15 min. On cooling a light purple solid separated from the light purple solution and was filtered off, washed with diethyl ether (2 × 15 cm³), and dried *in vacuo* (0.47 g, 64%) (Found: C, 35.6; H, 3.0. Calc. for C₃₂H₄₄As₄I₂Ru: C, 36.0; H, 4.1%). Electrospray mass spectrum: mlz = 901, 774, 718 and 647. Calc. for C₂₄H₃₃-As₃I₂¹⁰¹Ru 901, C₂₄H₃₃As₃I¹⁰¹Ru 774, C₁₆H₂₂As₂I₂¹⁰¹Ru 719 and C₂₄H₃₃As₃¹⁰¹Ru 647. ¹H NMR (298 K, CDCl₃): δ 1.6 (s) and 7.1–7.8 (m).

trans-[RuCl₂(SbMe₂Ph)₄]. The compounds RuCl₃·xH₂O (0.35 g, 1.34 mmol) and SbMe₂Ph (1.24 g, 5.41 mmol) in ethanol (30 cm³) containing concentrated HCl (1 cm³) were heated to reflux under nitrogen. The mixture was then immediately cooled to room temperature and stirred at room temperature for 1 h. The pink solid formed was filtered from the deep green solution, washed with ethanol (2 × 15 cm³), and dried *in vacuo* (0.30 g, 21%). It was recrystallised from dichloromethane–ethanol (Found: C, 34.6; H, 3.8. Calc. for C₃₂H₄₄Cl₂RuSb₄: C, 35.2; H, 4.0%). FAB mass spectrum: m/z = 1087, 1052, 859, 824 and 630. Calc. for C₃₂H₄₄- 35 Cl₂- 101 Ru¹²¹Sb₄ 1083, C₃₂H₄₄- 35 Cl₂- 101 Ru¹²¹Sb₅ 855, C₂₄H₃₃ 35 Cl¹⁰¹Ru¹²¹Sb₅ 820 and C₁₆H₂₂ 35 Cl₂- 101 Ru¹²¹Sb₅ 627. ¹H NMR (298 K, CDCl₃): δ 1.15 (s) and 7.1–7.6 (m).

trans-[RuBr₂(SbMe₂Ph)₄]. The compounds RuCl₃·xH₂O (0.25 g, 0.96 mmol) and LiBr (1.50 g, 17.24 mmol) in water (40 cm³) were refluxed under nitrogen for 2 h and then stirred at room temperature overnight. The water was removed and ethanol (30 cm³), SbMe₂Ph (0.57 g, 2.49 mmol) and concentrated HBr (1 cm³) were added. The mixture was heated to reflux then immediately cooled to room temperature and stirred for 1 h. The purple solid obtained was filtered off, washed with ethanol (2 × 15 cm³), and dried *in vacuo* (0.44 g, 39%). It was recrystallised from dichloromethane–ethanol to give redpurple crystals (Found: C, 32.6; H, 4.0. Calc. for C₃₂H₄₄-Br₂RuSb₄: C, 32.6; H, 3.7%). FAB mass spectrum: m/z = 1175, 1096, 947, 868 and 719. Calc. for C₃₂H₄₄-⁷⁹Br₂-¹⁰¹Ru-¹²¹Sb₄ 1171, C₃₂H₄₄-⁷⁹Br-¹⁰¹Ru-¹²¹Sb₄ 1092, C₂₄H₃₃-⁷⁹Br-¹⁰¹Ru-¹²¹Sb₃ 943, C₂₄H₃₃-

 $^{79}Br^{101}Ru^{121}Sb_3$ 864 and $C_{16}H_{22}^{\ \ 79}Br_2^{\ 101}Ru^{121}Sb_2$ 715. 1H NMR (298 K, CDCl₃): δ 1.2 (s) and 7.1–7.6 (m).

trans-[RuI₂(SbMe₂Ph)₄]. The compounds RuCl₃·xH₂O (0.25 g, 0.96 mmol) and LiI (2.29 g, 15.07 mmol) in water (30 cm³) were refluxed under nitrogen for 2 h and then stirred at room temperature overnight. The water was removed and ethanol (30 cm³), SbMe₂Ph (0.52 g, 22.7 mmol) and HI (57%, 1 cm³) were added. The mixture was heated to reflux then immediately cooled to room temperature and stirred for 1 h. The dark brown solid obtained was filtered off, washed with ethanol (2 × 15 cm³), and dried *in vacuo* (0.40 g, 33%). It was recrystallised from dichloromethane–ethanol to give red crystals (Found: C, 30.0; H, 3.7. Calc. for $C_{32}H_{44}I_2RuSb_4$: C, 30.2; H, 3.5%). FAB mass spectrum: m/z = 1271, 1144, 1041, 914, 813 and 686. Calc. for $C_{32}H_{44}I_2^{101}Ru^{121}Sb_4$ 1267, $C_{32}H_{44}I^{101}Ru^{121}Sb_4$ 1140, $C_{24}H_{33}I_{2}^{101}Ru^{121}Sb_3$ 1039, $C_{24}H_{33}I^{101}Ru^{121}Sb_3$ 912, $C_{16}H_{22}I_2^{101}Ru^{121}Sb_2$ 811 and $C_{16}H_{22}I^{101}Ru^{121}Sb_2$ 684. ¹H NMR (298 K, CDCl₃): δ 1.3 (s) and 7.1–7.7 (m).

[Ru₂I₃(PMe₂Ph)₆][CF₃SO₃]. The complex [Ru(dmf)₆][CF₃SO₃]₃ ¹⁰ (1.15 g, 1.17 mmol) was dissolved in warm ethanol (30 cm³). To this PMe₂Ph (0.48 g, 3.50 mmol) was added and the mixture heated to reflux under nitrogen for 30 min. The red solution initially formed gradually turned yellow. To this LiI (0.53 g, 3.5 mmol) in ethanol (10 cm³) was added and the mixture again heated to reflux under nitrogen for 50 min. On cooling a small amount of brown solid separated from an orange-brown solution. After filtering the orange-brown filtrate was reduced in volume to *ca*. 5 cm³ and diethyl ether (50 cm³) added to give a shiny light brown solid. This was washed with diethyl ether (2 × 15 cm³) and dried *in vacuo* (0.60 g, 66%) (Found: C, 37.2; H, 4.2. Calc. for C₄₉H₆₆F₃I₃O₃P₆Ru₂S: C, 37.7; H, 4.2%). Electrospray mass spectrum: m/z = 1412, 1274 and 1136. Calc. for C₄₈H₆₆I₃P₆¹⁰¹Ru₂ 1411, C₄₀H₅₅I₃P₅¹⁰¹Ru₂ 1273 and C₃₂H₄₄I₃P₄¹⁰¹Ru₂ 1135. ³¹P-{¹H} NMR: δ 11.7 (s).

The complex trans-[RuCl₂(PMe₃)₄] was made according to the literature methods from [RuCl₂(PPh₃)₃] and PMe₃. ³¹P-{¹H} NMR (298 K, CH₂Cl₂): δ -8.7 (s). ¹H NMR (298 K, CDCl₃): δ 1.4 (m).

trans-[RuBr₂(PMe₃)₄]. A solution of *trans*-[RuCl₂(PMe₃)₄] (0.20 g, 0.42 mmol) and LiBr (0.73 g, 8.4 mmol) was refluxed in ethanol (30 cm³) for 12 h. The orange solution was filtered and reduced in volume to *ca.* 10 cm³ when an orange solid separated. This was recrystallised from CH₂Cl₂-hexane, and dried *in vacuo* (0.1 g, 42%) (Found: C, 25.3; H, 6.0. Calc. for C₁₂-H₃₆Br₂P₄Ru: C, 25.5; H, 6.4%). ³¹P-{¹H} NMR (298 K, CH₂Cl₂): δ -10.7 (s). ¹H NMR (298 K, CDCl₃): δ 1.6 (m). Electrospray mass spectrum: mlz = 566, 490. Calc. for C₁₂-H₃₆⁷⁹Br₂P₄¹⁰¹Ru 563, C₉H₂₇⁷⁹BrP₃¹⁰¹Ru 487.

The complex trans-[RuI₂(PMe₃)₄] was prepared similarly from trans-[RuCl₂(PMe₃)₄] and LiI in ethanol. The light pink product was recrystallised from CH₂Cl₂–hexane (76%) (Found: C, 21.9; H, 5.4. Calc. for C₁₂H₃₆I₂P₄Ru: C, 21.9; H, 5.5%). ³¹P-{¹H} NMR (298 K, CHCl₃): δ –18.5 (s). ¹H NMR (298 K, CDCl₃): δ 1.74 (m). Electrospray mass spectrum: m/z = 659, 584. Calc. for C₁₂H₃₆I₂P₄¹⁰¹Ru 659, C₉H₂₇I₂P₃¹⁰¹Ru 584.

cis-[RuCl₂(PMe₃)₄]. A solution of the *trans* isomer in CH₂Cl₂ was allowed to stand under argon for 2 weeks. The solvent was removed in vacuum, and the solid rinsed with diethyl ether, recrystallised from CH₂Cl₂, and dried *in vacuo*. ³¹P-{¹H} NMR (298 K, CD₂Cl₂): δ –12.7 (t) and +9.0 (t), J = 30 Hz. ¹H NMR (298 K, CDCl₃): δ 1.55 (m) and 1.50 (m). The complex *cis*-[RuBr₂(PMe₃)₄] was made similarly from the *trans* isomer. ³¹P-{¹H} NMR (298 K, CH₂Cl₂): δ 10.3 (t) and –17.0 (t), J = 35 Hz. ¹H NMR (298 K, CD₂Cl₂): δ 1.65 (m) and 1.55 (m).

The complex cis-[RuCl₂(PMe₂Ph)₄] was made according to the literature method⁴ (Found: C, 52.9; H, 5.8. Calc. for

 $C_{32}H_{44}Cl_2P_4Ru$: C, 53.0; H, 6.1%). Electrospray mass spectrum: m/z = 691. Calc. for $C_{32}H_{44}^{35}ClP_4^{101}Ru$ 688. $^{31}P_{1}^{1}H$ NMR (220 K, CDCl₃): $\delta - 9.1$ (t) and + 12.5 (t), J = 30 Hz.

The complex *cis*-[RuBr₂(PMe₂Ph)₄] was made according to the literature method⁴ (Found: C, 47.3; H, 5.2. Calc. for $C_{32}H_{44}Br_2P_4Ru$: C, 47.2; H, 5.4%). Electrospray mass spectrum: m/z = 595. Calc. for $C_{24}H_{33}^{79}BrP_3^{101}Ru$ 594. ³¹P-{¹H} NMR (260 K, CDCl₃): $\delta - 15.3$ (t) and + 11.2 (t), J = 30 Hz.

[RuI₂(PMe₂Ph)₄]. The complex [RuI₂(PPh₃)₃] 9 (0.037 g, 0.003 mmol) in degassed light petroleum (b.p. 60–80 °C, 40 cm³) was stirred under nitrogen with PMe₂Ph (0.07 g, 0.50 mmol) for 1 h. The fawn solid was filtered off (Schlenk tube), washed with degassed light petroleum (2 × 15 cm³) and dried *in vacuo* (0.023 g, 79%) (Found: C, 42.0; H, 5.3. Calc. for C₃₂H₄₄I₂P₄Ru: C, 42.3; H, 4.9%). 31 P-{ 1 H} NMR (250 K, CHCl₃): δ +2.1 and -29.4 (triplets?), +5.7 (s) (see text).

Ruthenium(III) complexes

trans-[RuCl₂(PMe₃)₄]BF₄. The complex *trans*-[RuCl₂(PMe₃)₄] (0.10 g, 0.21 mmol) was dissolved in dichloromethane (5 cm³). To this, AgBF₄ (0.04 g, 0.21 mmol) was added and the mixture stirred under nitrogen for 10 min to give a green solution, which was filtered. The filtrate was reduced in volume to *ca.* 3 cm³ and hexane (25 cm³) added to give a green solid which was filtered off, washed with hexane (2 × 10 cm³) and dried *in vacuo* (0.051 g, 43%) (Found: C, 25.8; H, 4.5. Calc. for $C_{12}H_{36}BCl_2F_4P_4Ru$: C, 25.6; H, 4.6%). Electrospray mass spectrum: m/z = 443, 406 and 365. Calc. for $C_{12}H_{36}^{35}ClP_4^{101}Ru$ 440, $C_{12}H_{36}P_4^{101}Ru$ 405 and $C_9H_{27}^{35}ClP_3^{101}Ru$ 367.

The complex trans-[RuBr₂(PMe₃)₄]BF₄ was prepared similarly (47%) (Found: C, 21.6; H, 5.6. Calc. for $C_{12}H_{36}BBr_2F_4P_4$ -Ru: C, 22.1; H, 5.5%). Electrospray mass spectrum: m/z = 565, 490. Calc. for $C_{12}H_{36}^{79}Br_2P_4^{101}$ Ru 565, $C_9H_{27}^{79}Br_2P_3^{101}$ Ru 490. The complex trans-[RuI₂(PMe₃)₄]BF₄ was made similarly

The complex *trans*-[RuI₂(PMe₃)₄]BF₄ was made similarly (48%) (Found: C, 19.5; H, 5.0. Calc. for C₁₂H₃₆BF₄I₂P₄Ru: C, 19.3; H, 4.8%). Electrospray mass spectrum: m/z = 659, 584. Calc. for C₁₂H₃₆I₂P₄¹⁰¹Ru 659, C₉H₂₇I₂P₃¹⁰¹Ru 584.

trans-[RuCl₂(AsMe₂Ph)₄]BF₄. The complex trans-[RuCl₂-(AsMe₂Ph)₄] (0.135 g, 0.15 mmol) was dissolved in dichloromethane (5 cm³). To this solution, AgBF₄ (0.03 g, 0.15 mmol) was added and the mixture stirred under nitrogen for 30 min to give a dark green solution, which was filtered. The filtrate was reduced in volume to ca. 3 cm³ and hexane (25 cm³) added to give a dark green solid which was filtered off, washed with hexane (2 × 10 cm³) and dried in vacuo (0.08 g, 54%) (Found: C, 38.2; H, 3.9. Calc. for C₃₂H₄₄As₄BCl₂F₄Ru: C, 38.9; H, 4.5%). \tilde{v} (Ru−Cl)/cm⁻¹ (Nujol mull) 332. Electrospray mass spectrum: m/z = 717, 681 and 538. Calc. for C₂₄H₃₃As₃³⁵Cl₂¹⁰¹Ru 717, C₂₄H₃₃As₃³⁵Cl¹⁰¹Ru 682 and C₁₆H₂₂As₂³⁵Cl₂¹⁰¹Ru 535.

trans-[RuBr₂(AsMe₂Ph)₄]BF₄. The complex *trans*-[RuBr₂-(AsMe₂Ph)₄] (0.15 g, 0.15 mmol) was dissolved in dichloromethane (5 cm³). To this, AgBF₄ (0.03 g, 0.15 mmol) was added and the mixture stirred under nitrogen for 30 min to give a dark green solution, which was filtered. The filtrate was reduced in volume to *ca*. 3 cm³ and hexane (25 cm³) added to give a green-brown solid which was filtered off, washed with hexane (2 × 10 cm³) and dried *in vacuo* (0.15 g, 93%) (Found: C, 35.9; H, 3.8. Calc. for C₃₂H₄₄As₄BBr₂F₄Ru: C, 35.7; H, 4.1%). \tilde{v} (Ru−Br)/cm⁻¹ (Nujol mull) 254. Electrospra sas spectrum: m/z = 805, 726 and 624. Calc. for C₂₄H₃₃As₃⁷⁹Br₂¹⁰¹Ru 805, C₂₄H₃₃-As₃⁷⁹Br₁¹⁰¹Ru 726 and C₁₂H₂₂As₂⁷⁹Br₂¹⁰¹Ru 623.

trans-[RuCl₂(SbMe₂Ph)₄]BF₄. The complex trans-[RuCl₂-(SbMe₂Ph)₄] was suspended in 40% HBF₄ (20 cm³) in an icebath. To this, concentrated HNO₃ was added dropwise (several drops) and the mixture stirred for ca. 30 min. The orange-

Table 5 Crystallographic details for trans-[RuX₂(EMe₂Ph)₄] (X = Br, E = Sb; X = I, E = As), [Ru₂Br₄(SbMe₂Ph)₄] and [Ru₂I₃(PMe₂Ph)₆][CF₃SO₃]*

	[RuBr ₂ (SbMe ₂ Ph) ₄]	$[RuI_2(AsMe_2Ph)_4]$	$[Ru_2Br_5(SbMe_2Ph)_4]$	[Ru2I3(PMe2Ph)6][CF3SO3]	
Molecular formula	C32H44Br2RuSb4	C32H44AS4I2Ru	$C_{32}H_{44}Br_5Ru_2Sb_4$	$C_{49}H_{66}F_3I_3O_3P_6Ru_2S$	
$M_{\rm r}$	1176.58	1083.27	1517.36	1560.81	
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	
Space group	P1 (no. 2)	$P2_{1}/a$ (no. 14)	C2/c (no. 15)	P1 (no. 2)	
a/Å	13.034(4)	17.329(19)	16.048(7)	15.224(4)	
b/Å	13.234(2)	9.282(48)	12.009(7)	18.957(6)	
c/Å	11.896(3)	22.838(10)	21.881(7)	11.390(4)	
α/°	103.97(2)			106.93(3)	
β/°	105.44(2)	105.29(6)	99.75(3)	101.32(3)	
γ/°	95.46(2)		,	73.72(2)	
$U/\text{Å}^3$	1891.4(9)	3543(19)	4156(3)	2995.0 (1.7)	
2θ range for cell/°	49.3–50.0	33.9–40.4	18.8–23.0	18.8–21.0	
$D_{\rm c}/{\rm g~cm^{-3}}$	2.066	2.031	2.425	1.724	
Z	2	4	4	2	
F(000)	1108	2072	2812	1528	
Crystal size/mm	$0.55 \times 0.45 \times 0.40$	$0.55 \times 0.25 \times 0.15$	$0.30 \times 0.30 \times 0.03$	$0.4 \times 0.3 \times 0.2$	
Total no. observations	6974	6901	3990	10 995	
No. unique observations (R_{int})	6654 (0.015)	6669 (0.13)	3838 (0.080)	10 561 (0.08)	
Absorption correction	ψ Scan	ψ Scan	ψ Scan	ψ Scan	
Maximum, minimum transmission	0.553, 1.000	0.556, 1.000	0.360, 1.000	0.848, 1.000	
No. data in refinement	$5989 [I > 2.5\sigma(I)]$	2704[[] > 2-([)]	2102[I > 2.5-(I)]	$7169 [I > 3\sigma(I)]$	
	3599 [1 > 2.30(1)] 352	$3794 [I > 3\sigma(I)]$ 332	$2102 [I > 2.5\sigma(I)]$ 195	7109 [1 > 30(1)] 560	
No. parameters	53.44	59.15	80.61	22.84	
μ/cm ⁻¹ hkl Limits					
nki Liiiits	0–15, –15 to 15, –14 to 13	0–20, 0–11, –27 to 26	0–19, 0–14, –25 to 25	0–18, –21 to 22, –13 to 13	
S	3.56	2.38	1.55	4.11	
Maximum shift/e.s.d.	0.12	0.03	0.02	0.22	
	1.73 to -3.15	1.65 to -1.82	0.02 1.54 to -1.27		
Residual electron density/e $Å^{-3}$				2.13 to -1.70 0.060	
R R'	0.047 0.062	0.049 0.058	0.041 0.043	0.060	
* Details in common: scan mode $\omega - 2\theta$, $w^{-1} = \sigma^2(F_o)$; $2\theta_{\text{max}} 50.0^\circ$; $T = 150 \text{ K}$; $R = \Sigma F_o - F_c /\Sigma F_o $; $R' = [\Sigma w(F_o - F_c)^2/\Sigma w F_o^2]^{\frac{1}{2}}$.					

brown solid formed was filtered off, washed with water (2 × 10 cm³) and dried *in vacuo* (Found: C, 33.7; H, 3.3. Calc. for $C_{32}H_{44}BCl_2F_4RuSb_4$: C, 32.7; H, 3.7%). Electrospray mass spectrum: m/z=1053, 860 and 823. Calc. for $C_{32}H_{44}^{-35}Cl_1^{101}Ru_1^{121}Sb_4$ 1048, $C_{24}H_{33}^{-35}Cl_2^{101}Ru_1^{121}Sb_3$ 855 and $C_{24}H_{33}^{-35}Cl_1^{101}Ru_1^{121}Sb_3$ 820.

The following complexes were prepared similarly: trans-[RuBr₂(SbMe₂Ph)₄]BF₄, brown solid (Found: C, 30.3; H, 3.6. Calc. for C₃₂H₄₄BBr₂F₄RuSb₄: C, 30.4; H, 3.5%); electrospray mass spectrum: m/z = 1177, 1096, 950, 869 and 717; calc. for C₃₂H₄₄⁷⁹Br₂¹⁰¹Ru¹²¹Sb₄ 1171, C₃₂H₄₄⁷⁹Br¹⁰¹Ru¹²¹Sb₄ 1092, C₂₄-H₃₃⁷⁹Br₂¹⁰¹Ru¹²¹Sb₅ 943, C₂₄H₃₃⁷⁹Br¹⁰¹Ru¹²¹Sb₃ 867 and C₁₆-H₂₂⁷⁹Br₂¹⁰¹Ru¹²¹Sb₂ 715; trans-[RuI₂(SbMe₂Ph)₄]BF₄, dark brown solid (Found: C, 28.1; H, 2.9. Calc. for C₃₂H₄₄BF₄-I₂RuSb₄: C, 28.3; H, 3.2%); electrospray mass spectrum: m/z = 1041, 916 and 687; calc. for C₂₄H₃₃I₂¹⁰¹Ru¹²¹Sb₃ 1039, C₂₄H₃₃I₁₀₁Ru¹²¹Sb₃ 912 and C₁₆H₂₂I¹⁰¹Ru¹²¹Sb₂ 684; and trans-[RuI₂(AsMe₂Ph)₄]BF₄ (Found: C, 32.6; H, 3.5. Calc. for C₃₂H₄₄As₄BF₄I₂Ru: C, 32.8; H, 3.8%); electrospray mass spectrum: m/z = 901, 774, 719 and 592; calc. for C₂₄H₃₃As₃I₂¹⁰¹Ru 901, C₂₄H₃₃As₃I₁¹⁰¹Ru 774, C₁₂H₂₂As₂I₂¹⁰¹Ru 719 and C₁₆H₂₂-As₂I¹⁰¹Ru 592.

Crystallography

Details of the crystallographic studies are presented in Table 5. Data were collected on a Rigaku AFC7S diffractometer equipped with Mo-K α radiation (λ = 0.710 69 Å) and a graphite monochromator. Selected crystals were mounted on glass fibres following oil immersion and held at 150 K using an Oxford Cryosystems low-temperature device. Lorentz-polarisation corrections and any correction for the small amount of decay were applied during data reduction. Structure solution was by means of SHELXS 86 ¹⁵ and full-matrix least-squares refinement on F was carried out with the TEXSAN package. ¹⁶ A few of the thermal ellipsoids of the carbon atoms were suggestive of disorder although individual atom sites could not be recognised

and where the non-positive definite condition arose those atoms were treated as isotropic. This problem could be associated with the empirical absorption corrections used and the rather large μ values or genuine disorder. Hydrogen atoms were usually included in the model in calculated positions $[\textit{d}(\text{C-H}) = 0.95 \,\text{Å}].$ Other details for individual structures are as follows.

trans-[**RuBr**₂(**SbMe**₂**Ph**)₄]. Dark purple crystals were obtained from liquid diffusion of ethanol into dichloromethane. All the C atoms were treated as anisotropic.

trans-[RuI₂(AsMe₂Ph)₄]. Red crystals were obtained as above. All the C atoms except four were treated as anisotropic.

 $[Ru_2Br_5(SbMe_2Ph)_4]$. Purple rhomb-shaped crystals were obtained as above during attempts to grow crystals of *trans*- $[RuBr_2(SbMe_2Ph)_4]$. The N(z) test favoured the centric distribution and the analysis was carried out in the space group C2/c. All the C atoms were treated as anisotropic.

[Ru₂I₃(PMe₂Ph)₆][CF₃SO₃]. Crystals were obtained by liquid diffusion of hexane into a dichloromethane solution of the bulk material. The cation readily emerged during the structure solution and all C atoms were treated as anisotropic. No H atoms were included in the model. In later Fourier maps four small (ca. 3–4 e Å⁻³) peaks were observed. Three of these were interpreted as the S atoms of partial and disordered [CF₃SO₃]⁻ anions as they showed clusters of adjacent peaks (oxygens) at appropriate distances; the fourth showing no surrounding peaks was interpreted as a partial occupancy iodide anion. The atom population (with a fixed isotropic thermal parameter) refined to the small value 0.060(3). Three O atoms were included but the C and F atoms of the triflate were not satisfactorily modelled.

CCDC reference number 186/712.

Acknowledgements

We thank the EPSRC for support and funds to purchase the X-ray diffractometer, and for access to the Chemical Database Service at Daresbury. We also thank Dr. G. Reid for determining the structure of [RuI₂(AsMe₂Ph)₄] and Dr. S. R. Preece for some preliminary studies.

References

- 1 R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and M. Webster, *J. Chem. Soc.*, *Dalton Trans.*, 1990, 339.
- 2 R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and M. Webster, *J. Chem. Soc.*, *Dalton Trans.*, 1990, 2609.
- 3 N. R. Champness, W. Levason, R. A. S. Mould, D. Pletcher and M. Webster, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 2777; N. R. Champness, C. S. Frampton, W. Levason and S. R. Preece, *Inorg. Chim. Acta*, 1995, **233**, 43.
- 4 P. W. Armit, A. S. F. Boyd and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1975, 1663.
- 5 J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 896.
- 6 H. Werner and J. Gotzig, J. Organomet. Chem., 1985, 284, 73;

- J. Gotzig, R. Werner and H. Werner, J. Organomet. Chem., 1985, 285, 99.
- 7 C. M. Duff and G. A. Heath, J. Chem. Soc., Dalton Trans., 1991, 2401; Inorg. Chem., 1991, 30, 2528.
- 8 N. J. Holmes, A. R. J. Genge, W. Levason and M. Webster, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 2331.
- 9 N. R. Champness, W. Levason, S. R. Preece, M. Webster and C. S. Frampton, *Inorg. Chim. Acta*, 1996, **244**, 65.
- 10 R. J. Judd, R. Cao, M. Biner, T. Armbruster, H.-B. Burgi, A. E. Merbach and A. Ludi, *Inorg. Chem.*, 1995, 34, 5080.
- 11 N. R. Champness, W. Levason and M. Webster, *Inorg. Chim. Acta*, 1993, 208, 189.
- 12 N. R. Champness, W. Levason, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans., 1992, 3243.
- 13 C. M. Che, S. S. Wong and K. C. Poon, Inorg. Chem., 1985, 24, 1601.
- 14 G. A. Heath, D. C. R. Hockless and B. D. Yeomans, Acta Crystallogr., Sect. C, 1996, 52, 854.
- 15 G. M. Sheldrick, SHELXS 86, Program for crystal structure solution, *Acta Crystallogr.*, Sect. A, 1990, 46, 467.
- 16 TEXSAN, Single crystal structure analysis software, version 1.7-1, Molecular Structure Corporation, The Woodlands, TX, 1995.

Received 4th June 1997; Paper 7/03897F